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Abstract

Sandwich beams, comprising a truss core and either solid or triangulated face-sheets, have been investment cast in an
aluminium-silicon alloy and in silicon brass. The macroscopic effective stiffness and strength of the triangulated face-
sheets and tetrahedral core are estimated by idealising them as pin-jointed assemblies; tests show that this approxi-
mation is adequate. Next, the collapse responses of these sandwich beams in 3-point bending are measured. Collapse is
by four competing mechanisms: face-yield, face-wrinkling, indentation and core shear, with the active collapse mode
dependent upon the beam geometry and yield strain of the material. Upper bound expressions for the collapse loads are
given in terms of the effective properties of the faces and core of the sandwich beam; these upper bounds are in good
agreement with the measured beam response, and are used to construct collapse mechanism maps with beam geo-
metrical parameters as the axes. The maps are useful for selecting sandwich beams of minimum weight for a given
structural load index. The optimisation reveals that truss core sandwich beams are significantly lighter than the
competing concept of sandwich beams with a metallic foam core. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Sandwich beams, comprising stiff and strong face-sheets and a low density core, are often used for weight
efficient structures subjected to bending loads. Foam-cored sandwich panels compete with stringer-rein-
forced plates, particularly in curved configurations (Ashby et al., 2000), and a range of polymeric and
metallic foams have been developed for such light weight structural applications. But it is possible to use
materials which have greater stiffness to weight and strength to weight ratios than those of foams, by the
following argument. The stiffness and strength of conventional random foams scales as p> and p'?, re-
spectively, where p is the relative density of the foam (Ashby et al., 2000); these results are a direct con-
sequence of the fact that the deformation mode of the microstructure is “bending-dominated” under all
macroscopic stress states (Chen et al., 1999; Deshpande and Fleck, 2000). In contrast, the strength of a
cellular metal scales as p when the cell walls deform predominantly by local stretching. It follows that a
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Fig. 1. (a) Top view of the octet-truss double layer grid. The bold and faint lines denote the triangulated lattice of the top and bottom
layers while the dashed lines represent the tetrahedral core. (b) Side view of a sandwich beam with solid face-sheets and tetrahedral
core; the core has an identical geometry to that of the octet-truss.

“stretching-dominated” microstructure is about 10 times stiffer and three times stronger than a bending-
dominated microstructure for the choice p = 0.1; and these ratios increase with diminishing p.

Recently, Deshpande et al. (2001a) have analysed the topological criteria for cellular solids to be
stretching-dominated. They considered a periodic assembly of pin-jointed struts with similarly situated
nodes, and determined the degree of connectivity of bars per node in order to ensure rigidity. For the case
of double layer grids they showed that a minimum of three core struts and six face-struts are needed at each
node in order for stretching-dominated deformations to occur. A double layer grid satisfying this criterion
is sketched in Fig. 1. They also considered a sandwich beam comprising solid face-sheets and a pin-jointed
truss core; again, at least three core struts per node are required for collapse to occur by strut stretching.

In the present study we shall explore theoretically and experimentally the collapse response of stretching-
dominated sandwich beams in 3-point bending. The beams have a tetrahedral truss core, and either solid or
triangulated face-sheets, as sketched in Fig. 1. Parallel studies on similar sandwich beams have been
completed recently by Wicks and Hutchinson (2001) and Wallach and Gibson (2001). Wicks and Hutch-
inson (2001) have conducted a comprehensive study on the optimal design of sandwich beams with a
tetrahedral truss core and either solid or triangulated face-sheets. They found that the weight of the op-
timised beams for a given bending and shear strength was comparable to that for honeycomb-core sand-
wich beams and stringer-reinforced plates. Wallach and Gibson (2001) used experimental and finite element
techniques to investigate the stiffness and strength of a double layer grid comprising triangulated faces and
a pyramidal truss core. Analytical expressions for the stiffness and strength of a broad class of pyramidal
and tetrahedral truss cores are derived below in the appendix.

The scope of this paper is as follows: first, we report on the manufacture of tetrahedral truss core
sandwich beams with solid or triangulated face-sheets (as shown in Fig. 1). For the case of triangulated
face-sheets the geometry of the double layer grid is that of Buckminster Fuller’s octet truss (Fuller, 1961).
Second, analytical formulae are derived for the effective elastic—plastic properties of the triangulated face-
sheets and tetrahedral core. It is assumed that the macroscopic tensile strength is dictated by the yield of
individual struts, whereas the macroscopic compressive strength is set by the competing modes of yield,
elastic buckling and plastic buckling. These predictions are compared with measurements of the macro-
scopic stress versus strain response of double layer grids cast from LM25 aluminium-silicon alloy and MB1
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silicon brass. Third, analytical expressions are given for the stiffness and strength of the sandwich beams in
3-point bending in terms of the effective properties of face-sheets and core. The predicted collapse loads for
face-yield, face-wrinkling and core shear are compared with the measured values for selected beam geo-
metries. And fourth, collapse mechanism maps are generated for sandwich beams in 3-point bending, with
non-dimensional geometric parameters as axes. Such failure maps are used in determining minimum weight
designs as a function of the appropriate structural load index.

2. Materials and manufacturing route

Sandwich beams were constructed using a tetrahedral core, and either solid face-sheets or triangulated
face-sheets, as sketched in Fig. 1. The angle between the core struts and the faces was fixed at sin~' (1/2/3),
such that the strut-length of the core equalled that of the triangulated face-sheets. Two alloys were em-
ployed: an aluminium-silicon casting alloy LM25, of wt.% composition Al-Si 7-Mg 0.3, and a silicon brass
MBI, of wt.% composition Cu-Si 4-Zn 14. The sandwich panels were investment cast from polystyrene
pre-forms as follows: First, the tetrahedral cores and the triangulated face-sheets were injection moulded as
separate pieces in polystyrene; ! the cores were moulded with locating pins at the nodes, and the trian-
gulated face-sheets were moulded with mating holes. Second, the polystyrene cores were solvent bonded to
either triangulated or solid face sheets; and third, an investment casting process > was used to produce the
LM25 and MBI sandwich beams from the polystyrene sacrificial patterns. The tetrahedral core and tri-
angulated face-sheets comprised solid circular cylinders of radius ¢ = 1 mm and length / = 14 mm; the
resulting double layer grids were of overall dimension 280 x 130 x 16 mm?®. Photographs of the LM25
sandwich beams with both triangulated and 2 mm thick solid face-sheets are shown in Fig. 2.

3. Effective properties of the truss material

Before describing the sandwich beam response under 3-point loading, we begin by detailing calculations
for the effective moduli and plastic collapse strengths of the triangulated face-sheets and the tetrahedral
cores made from solid cylindrical struts of radius a and length /. Collapse by elastic and plastic buckling of
the struts in the core and face-sheets is also addressed. These predictions are then compared with mea-
surements on the LM25 and MBI truss materials.

In the subsequent sandwich beam analysis it is assumed that the tensile and compressive stresses in the
lower and upper face-sheets, respectively, balance the applied bending moment, with no contribution from
bending of the core. On the other hand, the transverse shear and indentation loads are supported mainly
by the core. Thus, the in-plane properties of the face-sheets and the out-of-plane properties of the tetra-
hedral core sandwiched between two rigid faces dictate the overall sandwich beam response under 3-point
bending.

3.1. Elastic properties

The effective moduli of the sandwich beam are calculated upon assuming that the aspect ratio a/! of the
struts is sufficiently small for the bending stiffness of the struts to be negligible compared to their stretching

! Meka Mouldings Ltd., 2nd Avenue, Edmonton, London, N18 2NW, UK 0181-807-5868.
2 Micro Metalsmiths Ltd., Thornton Road Industrial Estate, Pickering, N. Yorks YOI18 7JB, UK.
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(a)

Fig. 2. Photographs of the LM25 truss core sandwich panels with (a) triangulated face-sheets and (b) solid face-sheets.

stiffness. Thus, the struts are assumed to be pin-jointed at the nodes, considerably simplifying the analysis
given below.

3.1.1. Triangulated face-sheets

The elastic in-plane properties of the triangulated face-sheets are isotropic due to the 6-fold symmetry of
the triangulated face-sheets about the 3-axis of Fig. 1. The effective Young’s modulus and Poisson’s ratio in
the axes of Fig. 1 follow as (Hunt, 1993):

E{l Egz T /a
2= 50) (1a)
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and

1
V:§, (1b)

where E; is the Young’s modulus of the strut material.
3.1.2. Tetrahedral core

Upon assuming that the struts of the tetrahedral core are bonded to the rigid faces by frictionless pin
joints, the effective Young’s modulus £%; and shear modulus Gf, are given by:

E§374\/§n a\?2

E 3 (1) ! (22)
and

Gy; V21 ray?

E, 3 (7) (2b)
respectively.

3.2. Plastic collapse

In the upper bound calculations which follow for plastic collapse of the triangulated face-sheet and
tetrahedral core it is assumed that the struts are pin-jointed and made from a rigid, ideally plastic solid. The
macroscopic collapse stress is calculated by equating the external work to the plastic dissipation associated
with stretching of the struts for kinematically-admissible modes of collapse. The symmetry of the truss
materials is such that upper and lower bound collapse stresses coincide for each of the loading cases
considered here. Thus, the collapse stresses cited below are exact results for the pin-jointed truss materials.

We begin by describing the collapse surface for (i) triangulated face-sheets in (01,02 ) space and (ii) a
tetrahedral core sandwiched between rigid faces in (o33, 013) space, using the reference frame of Fig. 1.

3.2.1. Collapse surface of triangulated face-sheets in (a;;, 62;) space

Postulated collapse modes for the triangulated face-sheets under the macroscopic stress state (o1, 02)
are sketched in top views of the triangular cells in Fig. 3. In these sketches, the solid straight lines denote
struts in the rigid state, and the dashed lines refer to struts that are actively yielding. The struts yield in
either compression or tension (as denoted by arrows in Fig. 3) and thus two collapse locii exist for each
collapse mode. For the collapse Mode I, the strut labelled n1-n2 (so designated because it lays between
nodes nl and n2) dissipates plastic work and the associated segments of the yield surface are given by

022 g11 T ra
Modela: —=—-——(- 3
ode fa oy 30'Y \/?(1)’ (a)
and
022 011 T ra
M Ib: —=—-—-+—1(-
ode Ib p~ 30’Y+\/§(Z)7 (3b)

where oy is the yield stress of the solid material. For Mode II, the struts n1-n3 and n2-n3 dissipate plastic
work and the collapse planes become

&:_@@),

Mode Ila :
ode Ila . 5 7

(4a)
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Fig. 3. Collapse surface of the triangulated face-sheets in (611, 022) space. In the sketches of the collapse modes, the solid lines represent
struts in the rigid state, the straight dashed lines represent struts undergoing plastic collapse and the curved solid lines represent
buckling struts.

and

. 0117\/§7I a
Mode IIb : E*T(Y)' (4b)

3.2.2. Collapse surface of the tetrahedral core sandwiched between rigid faces in (o33, 613) space

Deshpande et al. (2001b) have previously explored the collapse modes for a tetrahedral core under
combinations of applied stress (033, 13); the collapse locus and the associated collapse modes are sketched
in plan views of the tetrahedral cell in Fig. 4. Again, dashed straight lines and solid lines denote struts
undergoing active yield and in the rigid state, respectively, while a solid circle represents rotation at a
frictionless joint. In Mode I, the two struts p2-p4 and p3-p4 dissipate work while in Mode II the strut p1-p4
yields. The collapse locii are

013 033 a\?
Mode Ia: — = +2n( =), Sa
oy \/EUY (Z> ( )
and
013 033 a\?
Mode Ib: —= —2n( = 5b
oy \/ng (l) ( )
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Fig. 4. Collapse surface of the tetrahedral core in (o33, g13) space. In the sketches of the collapse modes, the solid lines represent struts
in the rigid state, the straight dashed lines represent struts undergoing plastic collapse and the curved solid lines represent buckling
struts.

for Mode I and

013 033 a\?
Mode ITa: 28— __9% (%) 6a
Oy 2\/§O'Y (l) ( )
and
013 033 a\?
Mode IIb: —=——F—+7( - 6b
oy 2\/§O'Y (1> ( )

for Mode II. Under uniaxial compression a3, the tetrahedra collapse independently with zero transverse
straining. Consequently, the indentation strength of the tetrahedral truss core is approximately equal to its
uniaxial compressive strength, o5Y.

3.3. Elastic and plastic buckling of the triangulated face-sheets and tetrahedral core

The sandwich beams may collapse by the local elastic or plastic buckling of the constituent struts. Recall
that the axial bifurcation strength of a solid circular cylindrical strut of radius « and length / is given by the
Shanley tangent-modulus buckling formula

K*n’Ed*
e =13 (7)

where E, is the tangent-modulus, defined by the slope do/de of the uniaxial stress versus strain curve of the
solid material at the stress level o.. The factor k in Eq. (7) depends upon the rotational stiffness of the end
nodes of the strut and is central to the problem of calculating o, for a given network of struts. When a strut
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buckles, the rotation of its ends is opposed by the bending stiffness of the other struts: they exert a restoring
moment and it is this that determines the factor k> in Eq. (7). Thus, k depends upon the buckling mode. The
cells of the truss materials may buckle in many different modes and the resulting problem is difficult to
analyse completely. However, upper and lower limits on the buckling stress are obtained by taking £ =1
and 2 corresponding to pin-jointed and fully clamped end conditions, respectively.

The tangent modulus £, depends upon the strain hardening characteristics of the strut material. For an
elastic, ideally plastic solid, E, equals the Young’s modulus E; of the solid material and Eq. (7) reduces to
the Euler buckling stress; such struts will buckle elastically when the yield strain ey exceeds ((mka)/21)* but
will yield for smaller values of ey. The stress versus strain response of a strain hardening solid is commonly
described by the Ramberg—Osgood relation

e o 3/(ad}\"

2472 8

ey oy 7 (0 y) ’ (8)
where oy = Eey is the representative yield strength of the solid, and # is the strain hardening exponent. For
such a material description, the bifurcation stress g, is given by the implicit relation

ka \’ c 3 [(o.)"

()= ()2 (3) 0
from Eq. (7). The macroscopic collapse stresses associated with strut-buckling are estimated by a simple
work calculation in which the external work increment is equated to the internal work increment associated
with buckling of the struts for a kinematically admissible collapse mode. The collapse stress is derived in
terms of the local buckling stress g, of the struts, where o is given by the solution of Eq. (9) for a Ramberg—
Osgood solid. We assume infinitesimal straining, and write the virtual work expression in terms of the initial
configuration; consequently these estimates of strength become inaccurate when large deformations occur

prior to the onset of buckling. We proceed by exploring the effect of strut buckling upon the macroscopic
collapse surfaces for the triangulated face-sheets and tetrahedral core.

3.3.1. Collapse surface of the triangulated face-sheets in (o;;, 622) space with strut buckling active

The effect of strut buckling upon the collapse response of the triangulated faces under macroscopic
(011, 022) loading is sketched in Fig. 3, upon assuming ¢, < oy. The possible buckling modes are shown in
top views of the triangular cell, with the curved solid lines representing the buckled struts. Since the struts
only buckle in compression, a single collapse plane is associated with each buckled state, and is given by

. 92 _ou T (a4
Mode B-I: 7%= 24 \/§(1>’ (10a)
and
o \/gn a

3.3.2. Collapse surface of the tetrahedral core sandwiched between rigid faces in (o33, 0;3) space with strut
buckling active

Now consider the effect of strut buckling upon the collapse of the tetrahedral core under stress states
(033, 013). Provided that o is less than oy, the collapse surface for strut buckling lies inside that for plastic
yield, as sketched in Fig. 4. The collapse modes are displayed in side views of the tetrahedral cell in the
figure, with curved solid lines again representing buckled struts. The collapse locii are given by
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013 033 a\?
Mode B-1: — = 2n( - 11
ode p \/iac+ n(l), (11a)
and
o13 033 a\?
Mode B-1I: —=-——"—qx(-) . 11b
ode Oc 2\/§Gc TC(I) ( )

3.4. Comparison of predicted and measured effective properties

We proceed by comparing the analytical predictions of the effective properties of the triangulated face-
sheets and the tetrahedral truss cores with measured values for both the LM25 and MBI alloys.

3.4.1. Material properties of the constituent struts

In order to compare the measured and predicted stiffness and strength of the truss materials, we first
measured the uniaxial tensile response of the as-cast LM25 and MBI alloys. Tensile specimens of dog-bone
geometry were cut from the in-gates of the investment castings. The measured Cauchy stress versus log-
arithmic strain curves are plotted in Fig. 5 for a strain rate of 10~ s~!. We conclude that the LM25 alu-
minium silicon alloy can be approximated as an elastic, ideally plastic solid with a Young’s modulus
E, =70 GPa and a yield strength oy = 170 MPa. In contrast, the MBI silicon brass displays high strain
hardening, and the uniaxial stress versus strain curve is adequately fitted by the Ramberg-Osgood equation
(8) with n =4, gy = 100 MPa and ey = 0.1%.

3.4.2. Tensile tests on triangulated face-sheets

Tensile tests in the 1-direction were conducted on LM25 and MB1 dogbone shaped triangulated face-
sheet specimens of gauge length 190 mm and width 85 mm; since the strut length 1 equals 14 mm the
gauge section is of dimension 29 by 13 cells. We note in passing that these dogbone specimens dis-
play no edge effects: for a pin-jointed structure of this geometry the bar tensions do not vary across the
width of the specimen. These specimens were cast with the locating holes infilled, in order to mimic the
strengthening due to the presence of the pins of the tetrahedral core. A clip gauge of length 50 mm and
spanning approximately four cells was used to monitor the axial strain while the load was measured by
the load cell of the test machine and used to define the nominal axial stress on the net section of the
specimen.

Under uniaxial tension in the 1-direction, the LM25 face-sheet exhibits an initial linear elastic behaviour,
followed by a hardening response and terminated by strut fracture at a macroscopic axial strain of 1.8%, see
Fig. 6a. The analytical predictions of modulus Ef, and strength o1} (Egs. (1a) and (4b), respectively), are
included in Fig. 6a, and are in good agreement with the measurements.

The measured macroscopic stress versus strain response of the MBI face-sheet is shown in Fig. 6b. As
for the LM25 alloy, the MBI triangulated face-sheet exhibits an initial linear elastic behaviour followed by
a hardening response. However, the MBI face-sheet is more ductile than the LM25 face-sheet and has a
nominal fracture strain of about 10%. Two predictions of the stress—strain response of the triangulated
face-sheet are given in Fig. 6b:

(i) An infinitesimal calculation for an elastic, ideally plastic solid, with a measured modulus Eg = 100
GPa and an ultimate tensile strength oyrs = 465 MPa.

(i) A finite deformation calculation, allowing for a finite rotation of the nodes during axial extension of
the triangulated face-sheet. The calculation also makes use of the measured stress versus strain curve of
the MBI alloy, as given in Fig. 5b.
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Fig. 5. Measured tensile stress versus strain curve of the as-cast alloys shown as solid lines, and idealised responses shown as dotted
lines. (a) LM25 alloy, with elastic-ideally plastic representation. (b) MBI alloy with Ramberg-Osgood representation (8), with the
choice n =4, oy = 100 MPa and ey = 0.1%.

Method (i) grossly overpredicts and method (ii) moderately overpredicts the measured ¢ versus e,
curve for the triangulated MB1 face-sheets; although method (ii) captures the initial response, it does not
account for the premature failure of the face-sheets due to the presence of strain concentrations within
individual struts adjacent to the nodes.

3.4.3. Normal compression of tetrahedral core sandwiched between rigid faces

Compression tests in the 3-direction of Fig. 1 were conducted on the LM25 and MBI tetrahedral truss
cores sandwiched between 2 mm thick solid face-sheets. The solid face-sheets were cast integrally with the
tetrahedral core, and were sufficiently stiff to be treated as rigid in comparison to the truss core. The
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Fig. 6. Measured tensile stress versus strain response (o, versus ¢;) of triangulated face-sheets made from (a) LM25 and (b) MBI1. The
dotted lines are analytical predictions of the elastic-ideally plastic response, assuming infinitesimal straining, while the chain-dotted
lines for the MBI alloy denote the finite deformation analysis making use of the Ramberg—Osgood material description (8) with the

choice n = 4, oy = 100 MPa and ey = 0.1%.

compression tests were performed using a standard screw driven test machine at a nominal strain rate of
1073 s~!. The applied load was measured by the load cell of the test machine and was used to define the
nominal stress in the specimen; the nominal axial strain was measured via a clip gauge fixed between the
solid face-sheets.

The measured uniaxial stress versus strain curve, gs; versus es3, for the LM25 material is plotted in Fig.
7a. The stress versus strain curve exhibits a hardening response up to a strain of approximately 5%, with the
peak strength set by plastic collapse. Beyond this strain, the response is softening due to plastic buckling of
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Fig. 7. Uniaxial compressive stress versus strain curves (g33 versus e33) of the tetrahedral truss core, sandwiched between solid face-
sheets of thickness 2 mm, for (a) LM25 and (b) MBI alloys. The dotted line in (a) represents the elastic—ideally plastic collapse
prediction, while the dotted line in (b) represents the elastic—plastic buckling prediction.

the struts. Bedding-in effects during the early stages of deformation are apparent in Fig. 7a. These bedding-
in effects occur at the attachment points of the tetrahedral truss core to the face-sheets with the pins of the
tetrahedral core bedding into the solid faces during the initial stages of deformation. The analytical pre-
diction of strength (Eq. (5a)) is shown in Fig. 7a and is in good agreement with the measures strength. On
the other hand, the predicted modulus (2a) exceeds the measured value due to bedding-in effects at the

joints.

The measured o33 versus €33 response of the MBI truss core is shown in Fig. 7b; a hardening behaviour is

observed up to a strain of about 10%, followed by softening due to plastic buckling of the struts. In contrast



V.S. Deshpande, N.A. Fleck | International Journal of Solids and Structures 38 (2001) 6275-6305 6287

to the LM25 truss core which collapses by plastic yield, the compressive strength o5y of the MBI core is
controlled by plastic buckling of the struts. The critical buckling stress o, of the MBI struts is given by Eq.
(9) and is a function of the strut aspect ratio a//, the Ramberg-Osgood material parameters oy, ey and n,
and the end-constraints on the struts which determine the value of k. Visual examination of the deformed
MBI specimens revealed that the buckling mode of the struts corresponds to fully clamped end-constraints,
implying the value k£ = 2. The strength as given by Eq. (11a) (with £ = 2) is plotted in Fig. 7b and agrees
well with the experimental measurements. We note in passing that the buckling stress o. calculated using
Eq. (9) is only about 5% higher than that calculated numerically using the measured uniaxial stress versus
strain curve of the MBI alloy.

3.4.4. Shear tests on the tetrahedral core

The shear response, a3 versus €;3, of the tetrahedral core sandwiched between 2 mm thick solid faces was
measured using the single-lap shear configuration in accordance with the ASTM Standard C273-94 (1994).
Specimens of dimension 170 x 65 x 16 mm? were fastened to steel plates using self-tapping screws and were
then subjected to shear loading with the load line along one diagonal. The sign of ¢;3 was dependent upon
the orientation of the specimens in the steel grips. The applied load was measured by the load cell of the test
machine, while a clip gauge was used to measure the relative sliding displacement of the steel plates and
thereby the average shear strain in the specimen.

The o3 versus €3 responses of the LM25 truss core are symmetric about the origin to within experi-
mental error, see Fig. 8a. Failure is by the shearing of the pins of the tetrahedral truss core at the joints with
the face-sheets, at an average shear strain of about 3%. The predicted shear strength of the core due to
shearing of these pins is given by

it = () "

where ty is the shear strength of the alloy, and « is the radius of the pin (equal to that of the struts). For
simplicity we assume that the shear strength 7y is given by the Tresca relation 7y = gv/2. The strength
prediction, Eq. (12), is plotted in Fig. 8a and is in good agreement with the experimental measurements. In
contrast, the strength estimate from the strut stretching analysis (Eq. (5a)) overestimates the measured
values. The prediction (2b) of the shear modulus also overpredicts the measured value due to the occurrence
of additional shear and bending deflections of the pins at the attachment points between the tetrahedral
core and the face-sheets; this is a consequence of the fact that the centre lines of the core struts meet on a
plane within the core and not at mid-thickness of the face-sheets.

Next, consider the shear response of the MBI truss core. As for the LM25 case, the responses are
identical in the positive and negative 1-3 directions to within experimental error, see Fig. 8b. Shear failure
is again by shearing of the pins of the tetrahedral truss core, with the prediction (12) in good agreement
with the measured peak stress (where we have taken the shear strength of the solid MBI to be 17y =
outs/2). The predictions of the strut-stretching analyses are included in Fig. 8b. The predicted collapse
strength in the negative 1-3 direction due to the plastic buckling of the struts (Mode BII with k£ = 2) is
approximately equal to that due to pin-shear; visual inspection of the failed specimens confirmed that both
shearing of the pins and plastic buckling of the struts had occurred. In the positive 1-3 direction, the
predicted collapse strength due to the plastic buckling of the struts (Mode BI with £ = 2) is approximately
equal to that due to plastic yielding of the struts (Mode IIb) at the ultimate tensile strength, oyts of the
solid MB1. However, the Mode BI and IIb collapse strengths are much greater than the pin shearing
collapse strength; this prediction is confirmed by no visual evidence of plastic buckling of the tetrahedral
truss core struts.
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4. Prediction of stiffness and strength of truss beams in 3-point bending

In this section we cite analytical formulae for the stiffness and collapse strengths of truss-core sandwich
beams in three point bend, with the geometry as sketched in Fig. 9a. The sandwich beams are oriented such
that loading is parallel to the 2-axis as defined in Fig. 1. We assume that both the core and face-sheets are
elastic-ideally plastic continua; the appropriate effective properties of the core and face-sheets are derived in
Section 3. Consider a sandwich beam of uniform width b, comprising two identical face-sheets of thickness ¢
perfectly bonded to a truss core of thickness ¢. The beam is loaded in 3-point bending by circular cylindrical
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Fig. 9. (a) A sandwich beam under 3-point bend loading. (b) Collapse modes of a sandwich beam under 3-point bend loading.

rollers of radius R, see Fig. 9a. The span between the outer supports is L and the overhang distance beyond
the outer supports is H.

4.1. Analytical predictions of stiffness

The relative elastic deflection 6 of the inner and outer rollers is the sum of the flexural and shear de-
flections (see, Allen (1969)),
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FL® FL
0= + , (13a)
48(El),, 4(AG),,
where the equivalent flexural rigidity (EI),, is
E'\btd®> E'b*  Ef btd?
(EI)eq - 2 + 6 ~ 2 ) (13b)

in terms of the Young’s modulus Ef, of the face-sheets in the 1-direction as defined in Figs. 1 and 9a.
Typically, the core gives a negligible contribution to the overall bending stiffness. The equivalent shear
rigidity (AG),, is dictated by the shear stiffness of the core, and is given by

bd* .
(AG)eq = TGH ~ bCGU (13C)

in terms of out-of-plane the shear modulus G{, of the tetrahedral core in the 1-3 direction, the cross-
sectional area A of the core and the spacing d = ¢ + ¢ of the mid-planes of the face-sheets.

4.2. Collapse modes: limit load calculations

Ashby et al. (2000) calculated upper bound loads for the competing collapse modes of a sandwich beam
by idealising the core and face-sheets as rigid, ideally plastic solids, see Fig. 9b. Analytical formulae for the
collapse strengths of truss-core sandwich beams in 3-point bending are now stated in terms of the ap-
propriate effective strengths of the face-sheets and the tetrahedral core; full details are given in Ashby et al.
(2000).

4.2.1. Face yield

At any given value of applied load, the maximum bending moment on the beam cross-section is attained
at the location of the central roller. Plastic collapse occurs when this maximum bending moment attains the
collapse moment for the beam cross-section, and corresponds to the condition that the face-sheets attain
the yield strength ¢'Y in the 1-direction. The collapse load Fry is then given by

4bt(c+1)
o

where we have neglected the contribution to collapse load associated with plastic bending of the core.

Fry = (14)

4.2.2. Face wrinkling

The upper face-sheets are subjected to compressive stresses and, at the location of maximum bending
moment on the beam cross-section (beneath the central roller), they may fail by elastic or plastic buckling
instead of plastic collapse. The critical wrinkling stress of the face-sheets in the 1-direction, o7V, depends
upon the buckling mode including the inter-nodal distance of the tetrahedral core, as detailed in Section
3.3.1. The collapse load Firw of the truss beam is given by the analogous expression to Eq. (14), viz

4bt(c +1t

4.2.3. Core shear

The transverse shear force exerted on a sandwich beam in 3-point bending is carried mainly by the core;
consequently, plastic collapse by core shear can occur. Ashby et al. (2000) identified two competing modes
of core shear. Mode A entails core shear over the full length (L + 2H) of the sandwich beam, with plastic
hinge formation in both face-sheets beneath the central roller. Mode B comprises core shear over the
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central portion of length L, with plastic hinge formation in both face-sheets at the outer loading points;
thus, the overhanging regions of the sandwich beam, located beyond the outer supports, remain rigid. The
collapse loads by Modes A and B are given by

bt 2H
and
B btz Y cY
Fog = 47‘711 + 2bcat;, (16b)

respectively. Here, o$} is the shear strength of the tetrahedral core in the 1-3 direction. Note that collapse
Mode A is activated for small lengths of overhang H, and the collapse mechanism is expected to switch to
Mode B for overhangs satisfying the relation

172 ofY

— . 17
2caf (17)

H >

4.2.4. Indentation

The indentation mode of collapse involves the formation of three plastic hinges within the top face-sheet
adjacent to the central indenter, with compressive yield of the underlying core. The indentation pressure of
the tetrahedral core is assumed to equal its uniaxial compressive strength; supporting arguments for this are
given in Section 3.2.2. Both upper and lower bound analyses by Ashby et al. (2000) indicate that the in-
dentation load Fj is given by

F = 2bty/d'Y oSy, (18)

where ¢$} is the uniaxial compressive strength of the core in the 3-direction.

5. Three-point bend tests on sandwich beams

The sandwich beams were loaded in 3-point bend by 19 mm diameter cylindrical rollers aligned parallel
to the 2-direction of Fig. 1. The central roller was displaced at a rate of 0.02 mms~! and the applied load
and central roller displacement were recorded. To gain insight into the collapse mechanisms, the beams
were instrumented as shown schematically in Fig. 10. A clip gauge (CG) was used to measure the change in
height of the beam directly under the central roller and two additional clip gauges were used to measure the
relative sliding of the face-sheets on each side of the central roller, and thereby the average shear strain in
the core. Additionally, 120 Q strain gauges (SG) of length 1 mm were placed at mid-span on the lower face-
sheet. The beams with triangulated face-sheets had the strain gauges fixed onto struts parallel and inclined
to the axis of the rollers, as shown schematically in Fig. 10b, while a 90° rosette measuring longitudinal and
transverse strains was used for the beams with solid face-sheets.

Ideally, we would have wished to have designed specimen geometries in order to probe the regimes of
dominance of the competing collapse modes of face yield, face wrinkling, core shear and indentation.
However, in the current study the strut radius and length were fixed at 1 and 14 mm, respectively, as it was
not feasible to make a range of injection moulding tools to manufacture polystyrene precursor templates
with different strut dimensions. Further, limitations with current investment castings capabilities restricted
us to 2 mm thick solid face-sheets; thinner face-sheets resulted in “misrun failures”. The geometries con-
sidered are summarised in Table 1: the span L was varied while keeping the overhang H a constant. In the
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Fig. 10. (a) Location of clip gauges and strain gauges on the truss core sandwich beams loaded in three-point bend. (b) Sketch showing
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Table 1
Geometry of the three point bend specimens®
Specimen Material Width, 4 (mm) Span, L (mm)
Triangulated face-sheets L1 LM25 130 110
L2 LM25 130 190
M1 MBI 130 110
M2 MBI 130 190
Solid face-sheets, t = 2 mm L3 LM25 65 110
L4 LM25 65 190
M3 MBI 65 110
M4 MBI 65 190

*In all cases, the strut aspect ratio a// = 0.071, the core thickness ¢ = 12 mm and the overhang H = 45 mm.

remainder of this section the measured collapse responses of the LM25 and MBI sandwich beams with
triangulated and solid face-sheets are compared with the analytic predictions.

5.1. Sandwich beams with triangulated face-sheets

The observed collapse mode of the LM25 sandwich beams with triangulated faces (designated L1 and L2
in Table 1) was face yield with the struts on the lower face-sheets yielding in tension. On the other hand, the
collapse mode of the MBI beams (labelled M1 and M2 in Table 1) was face wrinkling due to plastic
buckling of the struts on the upper face-sheet.
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5.1.1. LM25 sandwich beams

The measured collapse responses of beams L1 and L2 with spans L = 110 and 190 mm, respectively, are
shown in Fig. 11a. The load increases monotonically with deflection until the struts inclined to the roller
axis on the lower face-sheet fail in tension. This collapse mode was confirmed by measurements from the
three clip gauges and two strain gauges mounted on the specimens. The readings from these gauges are
plotted against the relative displacement of the central and two outer support rollers in Fig. 11b for the
specimen L1 (L = 110 mm). The largest strain levels are experienced in the face struts inclined to the roller

(a)

(b)
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Fig. 11. (a) Measured and predicted load versus displacement response of the LM25 double layer grid in 3-point bending, with a span
L =110 and 190 mm. The prediction gives the elastic response and the limit load for the perfectly plastic solid. (b) Measured clip gauge
and strain gauge readings for the LM25 double layer grid of span L = 110 mm. The specimen geometry and location of gauges are

shown in Fig. 10.
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axis, while relatively low levels of strain are experienced by the core struts: we conclude that collapse is by
face yield, with core shear and indentation modes inoperative.

The predictions for beam stiffness, Eq. (13a)—(13c), and limit load, Eq. (14), are included in Fig. 11a.
These predictions employ Egs. (1a) and (4b) to estimate Ef, and o'Y, respectively, while G, is calculated
from Eq. (2b). The measured peak loads are in good agreement with the predictions for both span, L = 110
mm and 190 mm. However, the predicted stiffness for the L = 110 mm case is higher than the measured
value. This can be traced to the fact that the predicted shear stiffness G, exceeds the measured value due to
the local shearing and bending deflections of the pins of the tetrahedral core, recall Fig. 8a.

5.1.2. MBI sandwich beams

The collapse responses of beams M1 and M2 with spans L = 110 mm and L = 190 mm, respectively, are
shown in Fig. 12. Wrinkling occurs in both cases, due to plastic buckling of the upper face-sheet struts. The
struts buckle without rotation of the nodes and thus the buckling stress o, is given by Eq. (9) with & = 2; the
wrinkling stress ¢} for the triangulated face-sheets follows from Eq. (10b). The face wrinkling limit load,
Frw, estimated from Eq. (15) is included in Fig. 12 for each beam. These limit load predictions are lower
than the measured peak loads due to the large rotations of the MB1 sandwich beams prior to buckling; this
effect has been neglected in the limit load analysis since it assumes infinitesimal straining. As for the LM25
beams, the predicted beam stiffness is in satisfactory agreement with the measured value for the L = 190
mm beam but overestimates the stiffness of the L = 110 mm beam. Again, the source of the discrepancy is
the shearing and bending of the core pins in shear.

5.2. Sandwich beams with solid face-sheets

The collapse responses of the LM25 and MBI sandwich beams with solid face-sheets (specimens L3, L4,
M3 and M4 of Table 1) are detailed in this section. In all cases, collapse was by core shear. It is worth
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Fig. 12. Measured and predicted load versus displacement response of the MBI double layer grid in 3-point bending, with a span
L =110 and 190 mm. The prediction gives the elastic response and the limit load for the strain hardening solid.
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mentioning here that beams L4 and M4, with span L = 190 mm, have a variability of face-sheet thickness of
+30% over the length of the beams, due to casting misruns. Consequently, the plastic dissipation in the
hinges formed in the face-sheets cannot be calculated accurately, and the agreement between predicted and
measured strengths is poor.

In all cases the beam stiffness predicted by Eqgs. (13a)-(13c) exceeds the measured value. This is a
consequence of the fact that the centre-lines of the struts do not meet on the mid-plane of the face-sheets;
additional shear deformation and bending of the pins occur at the attachment points between the tetra-
hedral core and the face-sheets.

5.3. LM25 sandwich beams

The load versus deflection curves of specimens L3 and L4 are plotted in Fig. 13. Measurements of the
bending strains by the strain gauge rosette on the lower face-sheet, and measurements of the shear strain in
the core by clip-gauges, confirmed that the beams deform in Mode B core shear. The peak load corresponds
to the onset of shearing of the pins of the tetrahedral truss core.

The predicted limit load for pin shear is given by Eq. (16b), with o5} given by Eq. (12): the prediction
agrees well with the measured peak load for beam L3 with a span length L = 110 mm. However, the
agreement between the measured and predicted responses of specimen L4 with L = 190 mm (Fig. 13a) is
poor for the reasons detailed above. It is worth mentioning here that the specimens L3 and L4 had an
overhang length H = 45 mm which exceeds the transition value H = 18 mm (Eq. (17)), and so core shear
occurs in Mode B.

5.4. MBI sandwich beams

The MBI beams also collapsed by Mode B core shear. The load versus deflection responses of specimens
M3 and M4 are plotted in Fig. 13b; the peak load corresponds to shear failure of the joints between the
tetrahedral core and the face-sheets. Note that the predicted limit load for L = 110 mm is lower than the
measured peak value. This is because we underestimated the strength of the hinges formed in the face-sheets
by employing the MBI yield strength ¢fY = 100 MPa in Eq. (16b): strain-hardening of the MBI increases
the contribution to the strength from the face-sheets.

6. Minimum weight design

Truss core sandwich beams can be optimised to minimise weight against design constraints such as
collapse load, beam stiffness or some other structural index. In this section we shall minimise the weight of
sandwich beams with a tetrahedral truss core and solid face-sheets * made from the same material and
subjected to a given collapse load F in 3-point bending. We begin by stating the geometry, collapse load
and beam weight in non-dimensional terms. The non-dimensional face-sheet thickness #, core thickness ¢
and strut aspect ratio a are defined by

t=t/L, ¢=c/L and a=a/l, (19)

respectively. The non-dimensional weight of the sandwich beam M is related to the weight M of the beam
by

3 Wicks and Hutchinson (2001) have recently shown that truss core beams with solid face-sheets are always more weight-efficient in
carrying bending and shear loads than truss-core beams with triangulated faces.
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M= e 27 + 3V2nea’, (20)
where p is the density of the struts and face-sheets. The non-dimensional structural load index F is related
to the collapse load F by

_ F
F= 21
bLO’Y ’ ( )
where oy is the yield strength of the struts and face-sheets. Expressions for F follow from Egs. (14), (16b)
and (18) as
(22)

Fry = 4t(c + 1),
for face yield,
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FE = 47 + 2ned, (23)
for core shear in Mode B, and

F = 2"\ /nta, (24)

for indentation. In the above expressions we have employed ¢§; and of} as given by Eq. (5a): plastic

yielding of the struts is the assumed collapse mode for core shear and indentation. It remains to specify the
face-wrinkling collapse load Frw for truss core sandwich beams with solid face-sheets. Wicks and Hutch-
inson (2001) analysed the elastic buckling of face-sheets by assuming that the buckle wavelength is set by
the inter-nodal distance between attachments to the core; further, they assumed a negligible restraint of the
truss core to the buckling mode of the face-sheets. Upon making use of their analysis, the non-dimensional
collapse load Fgw is given by

Frw :7}(E+f), (25)

where v and ey are the elastic Poisson’s ratio and yield strain of the face-sheets.

For a prescribed strut aspect ratio a, the optimal design is obtained by selecting the beam geometry (7, ¢)
which minimises the weight M for a given structural load index F. To help with this optimisation, it is
instructive to construct a collapse mechanism map for the truss core sandwich beams with solid face-sheets
along the lines of those plotted by Chen et al. (2001) and Bart-Smith et al. (2001) for sandwich beams with
metallic foam cores. In constructing such a map it is assumed that the operative collapse mechanism is the
one associated with the lowest collapse load. An example of such a map with @ = 0.07 and solid material
parameters v =1/3 and ey = 0.007 is shown in Fig. 14 with the non-dimensional axes ¢ =¢/L and
t/c = t/c. It is worth mentioning here that the beam theory formulae of Section 4.2 used in constructing this
failure mechanism map are not expected to be valid for # and ¢ > 0.5 and thus the axes have been truncated
at these values. The regimes of dominance for each collapse mechanism are marked: face-wrinkling
dominates for the values of the parameters selected. For the purpose of selecting minimum weight geo-
metries contours of M and F have been added to the collapse mechanism map. Both F and M increase
along the leading diagonal of the map, with increasing ¢ and 7/¢. We note that the minimum weight design
for any value of structural load index F is attained along the boundaries of the collapse regimes. The arrows
shown in Fig. 14 designate the path of minimum weight design with diminishing F.

Explicit expressions for the minimum weight designs along the boundaries of the collapse mechanism
map can be obtained in a straightforward manner; however, such expressions are lengthy and are omitted
here for the sake of brevity. The minimum weight M, is plotted as a function of F in Fig. 15a for the above
case (@ = 0.07, v = 1/3, ey = 0.007), and the associated optimal geometrical parameters are included in the
figure.

It is instructive to explore the effect of strut aspect ratio @ upon the minimum weight M, for values of @
achievable by current manufacturing technologies. The results are shown in Fig. 15b for a = 0.07 and
a = 0.09: note that the choice a = 0.07 gives lower My, values at low values of F, whereas the choice
a = 0.09 gives lower weights at higher levels of F.

The point has already been made at the beginning of this article that sandwich beams with a stretching-
governed truss core are more weight efficient at carrying structural loads than sandwich beams with a
metallic foam core. We proceed by comparing explicitly the minimum weights of these two competing
concepts. For simplicity, consider a sandwich beam with a foam core and face-sheets made from the same
solid material of yield strength gy. Further, assume that the compressive strength ¢ and the shear 7}
strength of the foam core are related to the relative density p of the foam via (Ashby et al., 2000),

oY o = 0.25p"° (26)
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Fig. 14. Collapse mechanism map for truss core sandwich beams with solid face-sheets loaded in 3-point bend for a = a// = 0.07,
ey =7 x 1073 and v = 1/3. Contours of dimensionless weight M and the structural load index F have been added. The arrows trace the
path of minimum weight designs with diminishing F.

and

Tg)am = %GfYOaﬁ” (27)
respectively. With these relations in hand for the foam strength, we calculate the minimum weight M, of
metallic foam core sandwich beams loaded in 3-point bend, in the manner outlined by Chen et al. (2001).
Predictions for p ~ 0.06 and 0.11 are included in Fig. 15b: the choice p & 0.06 and 0.11 corresponds to the
truss cores with @ = 0.07 and 0.09, respectively. Moreover, p = 0.11 is typical for commercially available
metallic foams. We note that the truss core sandwich beams are highly weight efficient compared with foam
core sandwich beams particularly at the higher values of F.

The optimisation results presented here are for fixed values of strut aspect ratios a as dictated by
manufacturing constraints for investment casting. On the other hand, Wicks and Hutchinson (2001) al-
lowed the strut aspect ratio a to vary and found global minimum weight designs using a numerical search
algorithm. They report that the fully optimised designs lie on the boundaries between the collapse modes of
face yield, elastic face wrinkling and elastic buckling of the core struts. Their global minimum is compared
with the predictions for @ = 0.07 and 0.09 in Fig. 16. The optimal values of strut aspect ratio a are very low
and increase from about 0.02 to 0.04 with increasing F over the selected range. It is concluded that the
minimum weight design for @ = 0.07 has a mass which is about 30% greater than the global minimum of
Wicks and Hutchinson (2001). It is anticipated that future advances in manufacturing technologies will
yield substantial weight savings through reduced values of a.
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Fig. 15. Minimum weight designs for truss core sandwich beams with solid faces, ey = 7 x 10~* and v = 1/3. Depending upon the
assumed value of £, collapse is by combined face yield and wrinkling (FY-FW), by combined face yield and indentation (FY-IND) or
by combined core shear and indentation (CS-IND). (a) Details of design for strut aspect ratio a// = 0.07. (b) Comparison of minimum
weight design for selected strut aspect ratios a with that for a metallic foam core.

7. Concluding remarks

Truss-core sandwich beams with triangulated and solid faces have been investment cast in LM25
aluminium-silicon and MBI silicon-brass alloys. The measured effective properties of the triangulated
face-sheets and tetrahedral core agree well with the analytic predictions and their deformation is stretching-
governed in most cases. However, shear failure of the tetrahedral core is by plastic shearing of the pins
attaching the tetrahedral core to the face-sheets. The design of adequately stiff and strong joints that
minimises the mass of the nodes is an important consideration in future refinements of these truss materials.

The analytic strength formulae given by limit load analyses are in good agreement with the measured
collapse strengths of the truss core sandwich beams loaded in 3-point bend: the collapse modes of
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Fig. 16. Comparison of minimum weight designs for fully optimised truss core sandwich beams with solid faces (Wicks and Hutch-
inson, 2001) and designs with a/! fixed at 0.07 and 0.09, ey = 7 x 1073 and v = 1/3. The fully optimised beams collapse by combined
face yield, face wrinkling and elastic buckling of the core struts (FY-FW-CB) over the shown range of F.

face-yield, face-wrinkling and core shear were each observed. The use of effective properties for the tetra-
hedral core and triangulated face-sheets is an acceptable simplification in predicting the beam response.
The strength formulae for the sandwich beams are used in minimum weight design, and reveal that optimal
sandwich beam designs lie at the boundaries of competing collapse modes. Moreover, the optimisation
reveals that practical designs of truss core sandwich beams compare very favourably with the competing
concept of metallic foam core sandwich beams from a weight standpoint.
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Appendix A. Comparison of the stiffness and strength of tetrahedral and pyramidal truss cores

The pyramidal truss core competes with the tetrahedral truss-core for sandwich beam construction.
Wallach and Gibson (2001) recently reported a finite element analysis of the stiffness and strength of a
pyramidal truss core. * In this appendix we give approximate analytical expressions for the stiffness and
strength of tetrahedral and pyramidal truss cores, comprising elastic—plastic, circular cylindrical struts of
length / and radius a. It is straightforward to extend these formulae to the case of struts of arbitrary cross-
section. We shall focus on the most pertinent properties of the core for sandwich panel applications: the

4 JAM Corp., 17 Jospin Road, Wilmington, MA 01887-102, USA. Fax: +1-617-978-0080.
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Fig. 17. Geometry of (a) tetrahedral core and (b) pyramidal core. (S, 7, V) are the bar tensions of the tetrahedral truss and (S, T, V, W)
are the bar tensions of the pyramidal truss due to a nodal force F applied to node A of each assembly.

out-of-plane axial stiffness £33 and strength o33, and the transverse shear stiffness Gi; and G»;, and strengths
a13 and 0,;3. The struts are ascribed a sufficiently low aspect ratio a/! for their bending stiffness and strength
to be negligible compared to their stretching stiffness and strength. Thus, the core is treated as a frictionless
pin-jointed truss.

Sketches of the tetrahedral and pyramidal truss cores with their associated Cartesian co-ordinate
system are shown in Fig. 17. Here we consider truss cores sandwiched between rigid face-sheets, and
consider the full range of core aspect ratios, as parameterised by the angle w between the core struts and the
faces.

A.1. Tetrahedral core

Consider first the stiffness and strength of a tetrahedral core, as sketched in Fig. 17a. The relative density
of the core (defined by the density of the core divided by the density of the solid from which it is made) is

p:z—”;@)z, (A1)

V/3 cos? wsinw

for a core occupying 50% of available tetrahedral sites, as shown in Fig. 1a. If, instead all of the tetrahedral
sites are occupied then the formula (A.1) for p should be doubled. However, the predictions given below for
stiffness and strength, and expressed in terms of p, hold for any area fraction of tetrahedral sites occupied
by the core. The normal modulus E3; is deduced by applying a point load F with single component F; to the
apex node A of a representative tetrahedron, as defined in Fig. 17a, and by calculating the resulting normal
displacement of the two face-sheets. Consequently, we obtain
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Exs .4 2¢sin’ o /a\?

£, P w_\/§cos2w(1)
Triangular symmetry implies transverse isotropy of elastic properties, such that the transverse shear
modulus of the core is independent of orientation within the 1-2 plane, giving Gj3 = G»3. The shear
modulus Gi; is deduced by applying the single force component /| to node A, and by determining the work-
conjugate nodal displacement, to get

(A.2)

5 2
%:gsinZZw:%sinw<%> . (A.3)

Now consider the strength of the tetrahedral truss. The normal strength a3; is associated with the simul-
taneous yield of all three bars, and is given by

033 _ .o 271 sinw a>2
23 _ >~ (= A4
oy psim @ \/370052@(1 ’ (A4)

for both tensile and compressive loading. The transverse shear strength is specified in terms of the mag-
nitude of shear strength 7 and its direction y with respect to the x;-axis, as defined in Fig. 17a,

013 = TCOS lp, 033 = Tsin l//7 033 = 0. (AS)

Equilibrium dictates the relation between the force F on node A and the macroscopic shear stress 7, such
that

R =24013, F=24013, =0, (A.6)
where
33
A= T\/— I cos* (A7)

is the area of the base triangle of each tetrahedron in the (x;,x;) plane. The factors of two in Eq. (A.6) arise
because only 50% of the tetrahedral sites are assumed to be occupied, consistent with the definition (A.1)
for p.

Each pin-jointed tetrahedron is statically and kinematically determinate and so the tetrahedral core has
the property that the initial yield surface and limit yield surface coincide for struts made from an elastic—
ideally plastic solid. On assuming that the single bar tension T (see Fig. 17a) attains the yield value
T = na’oy, the magnitude t of the in-plane shear strength depends upon the orientation of in-plane loading
according to

T psin2o w 1 (a)Z
oy 4 cosy \/3coswcosy NI/’

for || < =m/6. If instead, it is assumed that the single bar tension S attains the compressive yield value
S = —na’ay, then the macroscopic shear strength is

(A.8)

P sin 2w _ 2n 1 (a)z

z (A.9)

oy (cosy +3siny) V3 (cosy + v3siny) cosw

for n/6 <y < m/2. The solution for 7 is periodic in v, with a period of 27/3, and reflects the symmetry of
the structure. Each plane of the yield surface corresponds to a single strut attaining tensile or compressive
yield, as summarised in Fig. 18a. Thus, the in-plane shear strength fluctuates with iy between the minimum
value,
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Fig. 18. Yield and buckling collapse surfaces in transverse shear for (a) tetrahedral and (b) pyramidal core. The collapse modes in (b)
have only been partially labelled for the sake of clarity. The collapse modes of the unlabelled collapse planes follow from symmetry.
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at = n/6 4+ nn/3, where the integer n ranges from 0 to 5.

The compressive strength o3; and the transverse shear strength © are degraded when the strut buckling
stress g, as given by Eq. (7), is less than the material yield strength oy; then, the expression (A.4) still
pertains, but with the factor oy replaced by a.. Similarly, the segments of the shear yield surface (i) which
are associated with compressive yield of one of the struts are similarly reduced in magnitude: the relations
(A.8) and (A.9) hold, but with oy replaced by o, as shown diagrammatically in Fig. 18a.

A.2. Pyramidal core

A similar analysis can be conducted for the normal and shear stiffness and strength of a pyramidal truss
core, as sketched in Fig. 17b. The relative density p of this core is

_ 2n a\?
p_coszwsinw(7> ’ (A12)

and the normal modulus E3; is given by

E33 _ .4 sin3cu a\2
— =psinw=2 (—) . A.13

Eg p @ 7Icos2 w\l ( )
As for the tetrahedral core, the truss core has a sufficient degree of symmetry for the transverse shear
modulus to be isotropic, and

G G 0 . . 2

E—?:E—?zgsmsz:nsmw(%) . (A.14)
The normal collapse strength o33 is attained when all four bars yield simultaneously in tension or in
compression, and equilibrium provides the relation

033 _ . sinw /a\2
T _ psint 0 =20 S (4 INE

(% PRI @ =T o\ ( )
The transverse shear strength 7 is dependent upon the loading direction y as defined in Fig. 17b. The yield
surface consists of a locus of collapse planes, with each plane corresponding to one strut undergoing tensile
yield, the opposing strut compressive yield, and the remaining two struts remaining rigid. For example,
assume that the bar AB of Fig. 17b yields in tension under the force V = na’sy, the bar AD yields in

compression under the force S = —ma’cy while the remaining bars AC and AE remain rigid but not
necessarily stress free. Then, the shear strength t(y) is given by
() :Esin2w: 7 (g)Z7 (A16)
oy 4 cosyy coswcosy \I

for |¢| <m/4. We conclude that t(y) is periodic in , with a period of /2, and constitutes a square in
stress space, see Fig. 18b; with increasing i, the magnitude 7 fluctuates between the minimum value
(1/4)poy sin 2w and the maximum value (v/2/4)poy sin 20.

When the buckling stress o, of the struts is less than the material yield strength oy, the compressive and
transverse shear strengths are degraded. The compressive strength g3; of the pyramidal core is still given by
Eq. (A.15) but with oy replaced by a.. On the other hand, transverse shear can trigger two distinct collapse
mechanisms involving buckling of the bars.

(1) Collapse modes which involve the simultaneous tensile yield and buckling of opposing bars. For
example, bar AB yields in tension at a stress oy while bar AD buckles at a stress g, with bars AC and AE
remaining rigid but not necessarily stress-free. Then formula (A.16) still applies but with oy replaced by
(oy + 0.)/2: the collapse surface in this case is an inner square, as sketched in Fig. 18b.
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(i1) Adjacent bars buckling at a stress o, with the other two bars remaining rigid. For example, bar AD

and bar AE buckle in compression under the force S = —na’s. and T = —na’o., respectively, while bars AB
and AC remain rigid. The shear strength (i) is then given by
(Y) P sinZw. _ 2n 1 . (g>2 (A17)
oc 2 (cosy+siny) cosw (cosyy +siny) \ 1

In this case the collapse surface is the rotated square shown in Fig. 18b.

The dominant failure mode depends upon the value of a./av, as follows. Plastic yielding of the bars, Eq.
(A.16), occurs for a./oy > 1. When 1 > o./ay > 0.5 the shear strength is the inner envelope of the collapse
surfaces (i) and (ii) (this is the case sketched in Fig. 18b). For o./0y < 0.5, the macroscopic strength () is
governed by mechanism (ii) and Eq. (A.17) applies for all .

A.3. Comparison of performance of tetrahedral and pyramidal truss cores

It is striking that the normal stiffness E3; and strength o33, and the transverse shear stiffness G; are the
same for both geometries of core, at a given relative density p and strut inclination angle w. Further, the
minimum value of transverse shear strength (i) is identical for the two types of core. However, the degree
of anisotropy in shear strength is greater for the pyramidal core: the maximum value 7, is 41% above the
minimum value for the pyramidal core, whereas 1, exceeds i, by 15% for the tetrahedral core.

The shear stiffness and strength for both the tetrahedral and pyramidal cores are maximised by choosing
a strut inclination w = n/4 = 45° by Egs. (A.3), (A.8), (A.14) and (A.16): the choice w = arcsin y/2/3 ~
55° adopted in the body of this paper gives a core shear stiffness and strength which is 6% below the optimal
value. In contrast, the normal stiffness and strength at fixed p are maximised by selecting  as close to 7/2
as practically viable.
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